
CAB data handling performance report

abaranov@fnal.gov

The purpose of this document is to understand scalability and performance

issues of the cabsrv2 SAM data handling setup. The methodology is based on

comparison of the CPU/Wall ratio of the job run in an idealistic single node

environment with that been derived from the real-time historical data of SAM. I

presume that scalable system, given the resources and the average use, will maintain

both ratios numerically close. If rations are close, no changes to SAM data handling will

likely improve system performance without scaling cluster itself.

 What is measured

In the study I use following parameters to characterize particular type of the

CAB job.

1) Average file processing time, or CPU consumption as time between file open and

close calls.

2) Number of jobs run in a day

3) Number of files served in a day

4) Average file size consumed by the job in MB

5) Average waiting time for the job to get next file in sec.

CPU/Wall ratio is assumed as "Average file processing time"/("Average file

processing time " + "Average file waiting time") . This formula treats “Wall” time as

the sum of the CPU consumption and the time it takes to deliver a file from SAM. In

reality, other factors may contribute to the Wall time of the job as well.

 Data sample

Minimizing standard error of the study, the study picks the CAF-CS analysis as

the most data intensive and parameter consistent job type. Again, the presumption

attempts to minimize stddev of the base parameters by avoiding aggregation of the

mixture of the job types that have vastly different characteristics. Data were collected

on May 3 2006.

What are the most data intensive jobs? The table below compares CAF and TOP

files analyses.

 Number of files Average size MB

CAF-CS 34476 989.932

TOP 4650 171.378

Clearly CAF jobs take the lead.

Now, rest of the parameters:

Avg. CAF file processing

time/stddev

Avg. = 504s stddev = 644s

Number of CAF jobs 1084

Number of CAF files

served

34476

Avg. CAF file size / STD Avg. = 989.9 MB

stddev=257MB

Avg. file waiting

time/STD

248 seconds

CPU/Wall ��������	
���������	���������		�������������

��������
��������		����������

* The distributions noticeably peeked at efficiency 1 and 0 wait times. These

peaks reflect the cabsrv2 station setup that is tuned to deliver files in pairs. Thus, every

other file is available at instant.

 Ideal CPU/Wall (no presaging)

Idealistic data handling CAF job environment complies with following

constraints:.

1) All job data resides on a remote server.

2) Job has an exclusive access to the data.

3) Files are requested sequentially.

Average transfer speed per file: 5Mb/s

Average file size: 989.932 MB

Ideal CPU/IO efficiency for a single CAF job

Data rate 5Mb/s -> 200 sec per file -> 200 + 60 = 260 sec per file with CRC

check

CPU / Wall = 0.70

 Results

The simulated CPU/Wall is the "same" as the one measured in production. This

result suggests that, in fact, the existing data handling model on CAB is optimal (or

within acceptable limits). However, surprisingly enough calculated CPU/Wall is at the

conflict with plots generated by the batch system monitoring software. At that time

(May 03), the reported CPU/Wall ratio was actually ~0.15. One way to look at the

discrepancy is to question the assumption of CPU utilization by the job at times when

data is available from SAM.

To analyze other factors that may contribute to the job “Wall” clock we’ve taken

a snapshot of the machine state. See below the snapshot of “ top” command on the single

disk/dual processor CAF analysis worker node.

CPU CPU_user nice system irq Softirq iowait Idle

Total 74.6% 0.0% 6.6% 0.0% 0.0% 118.6% 0.0%

cpu00 52.0% 0.0% 4.0% 0.0% 0.0% 44.0% 0.0%

cpu01 22.6% 0.0% 2.6% 0.0% 0.0% 74.6% 0.0%

CAF process states:

PID USER STAT %CPU %MEM TIME CPU COMMAND

8456 Begel D 52.2 38.7 1989m 0 cafe

18645 mundal D 24.1 7.7 77:35 1 café

The node did not have neither incoming nor outgoing IO, yet the iowait was

118%.

In the model, analysis jobs read data from local disks. For the analysis at rates of

20Mb/s (see job processing time histogram plot), the sole disk becomes more expensive

resource than CPU. Thus, disk not CPU effectively limits number of processes running

on the machine.

Extrapolating the case, the machine equipped with one hard drive translates

CPU utilization of dual nodes running CAF analysis to %50. That combined with 0.58

data handling efficiency yields cumulative CPU/Wall ratio of 0.28 or less. The

statement should manifest more clearly as the job data consumption rates grows. Let

fetch batch system wall time by user running CAF jobs

mysql> select sum(time_to_sec(walltime)) as wall ,

sum(time_to_sec(cput))/sum(time_to_sec(walltime)),user, count(*) from

pbs_accounting where rec_date = '2006-05-03' and user in

('begel','calfayan','chadj','charly','chunxuyu','duflot','fox','ghesketh','juste','mansoora','mar

kowen','miruna','oleksiy','shfu','tuchming','venkat') and cluster='d0cabsrv2' and

queue='sam_lo' group by user order by wall;

 wall ratio user count(*)

 703413 0.06 mansoora 57

 785128 0.35 ghesketh 14

 1624243 0.23 charly 97

 2076586 0.14 chunxuyu 192

 2292501 0.14 juste 26

 2926798 0.16 miruna 684

 4576242 0.22 oleksiy 48

 6249425 0.06 fox 103

The average CPU/Wall is 0.15. Let’s look at the biggest contributor:

User fox :

Avg. CAF file processing

time/stddev

Avg. = 150secs stddev = 265secs

Number of CAF files served 10000

CPU/Wall Avg 0.41 sd 0.26

Again, there is a difference between reported and calculated CPU/Wall. Let see

if disk read access might be an issue:

A test of the concurrent read of the 2 files on worker node:

rw-r--r-- 1 sam ods 1041292439 May 10 03:24 CAF-CSGv3-CSskim-MUinclusive-20060208-155015-

2019758_p17.09.03_p18.05.00.root

-rw-r--r-- 1 sam ods 1028313869 May 10 03:26 CAF-CSGv3-CSskim-MUinclusive-20060208-181848-

2019476_p17.09.03_p18.05.00.root

<d0cs346> date; cat CAF-CSGv3-CSskim-MUinclusive-20060208-155015-2019758_p17.09.03_p18.05.00.root >

/dev/null ; date &

Thu May 11 07:38:04 CDT 2006

[1] 13298

<d0cs346> date ; cat CAF-CSGv3-CSskim-MUinclusive-20060208-181848-2019476_p17.09.03_p18.05.00.root >

/dev/null ; date

Thu May 11 07:38:24 CDT 2006

Thu May 11 07:40:35 CDT 2006

Thu May 11 07:41:07 CDT 2006

[1] + Done (date; cat ...

<d0cs346>

It took140 seconds to read 1Gb file. Now, let’s assume this number as an

average IO time per job and discount it against average “CPU” time reported by SAM.:

(170 – 140)/(170 + 250) = 0.07

 Conclusion

The report can be succinctly summarized by stating that the single disk

configuration of the CAB worker nodes is not optimal for jobs where the analysis

duration is comparable to disk access time.

 Action items

a) Continue monitoring individual workers to collect more usage statistics

b) Prohibit/control/reduce use of the worker nodes as an alternative source of the

data. In CAB setup worker nodes are part of the cache. Thus, it is possible (and

likely) that there can be many replicas of the same file scattered among primary

and worker cache nodes. By not having explicit preference in choosing a

particular replica, station is more likely to select. Worker nodes as the data source

for a given job/file.

Worker caches are not designed to sustain heavy IO and their use as storage

resource may aggravate CPU utilization to an average less than %50.

* Station development effort ~1 week.

c) Increase cumulative disk / network IO throughput. Disk fragmentation, network

driver. Current values are (cumulative): disk access (16Mb/s), network 15 Mb/s. It

was suggested to look into fragmentation and TCP setups of the worker nodes.

d) Decuple storage and computing resources to increase flexibility in independent

scheduling of the data / CPU intensive jobs.

Scripts:

 CPU and WAIT times as reported in SAM log files:

function getCPID(line){

 split(line,tmp,"Consumer Process"); split(tmp[2],cpidA,"[()]"); return cpidA[2];

} ;

function getCPID2(line){

 split(line,tmp,"acquired CPID="); return tmp[2];

}

function tmstmp(){

 dt=$1; split(dt,dtA,"/"); timeStamp=$2; split(timeStamp,timeA,":"); return

int(dtA[2])*24*3600+3600*int(timeA[1])+60* int(timeA[2])+int(timeA[3]);

}

BEGIN { print "CPU","WAIT"; }

/acquired CPID=/{

 cpid = getCPID2($0);

 procTimeMap[cpid] = tmstmp();

 count[cpid] = 0;

}

/opens.* CAF-CS/{

 cpid = getCPID($0);

 tm = tmstmp();

 if (cpid in procTimeMap){

 timeDiff = tm - procTimeMap[cpid];

 if (cpid in waitTimeMap)

 waitTimeMap[cpid] += timeDiff;

 else

 waitTimeMap[cpid] = timeDiff;

 }

 procTimeMap[cpid] = tm;

}

/closes.* CAF-CS/{

 tm = tmstmp();

 cpid = getCPID($0);

 if (cpid in procTimeMap)

 {

 timeDiff = tm - procTimeMap[cpid];

 totalTime += timeDiff; numCached += 1;

 if (cpid in waitTimeMap){

 if (cpid in cpuTime)

 cpuTime[cpid] += timeDiff;

 else

 cpuTime[cpid] = timeDiff;

 count[cpid] += 1;

 if (count[cpid] == 3){

 print cpuTime[cpid]/count[cpid], waitTimeMap[cpid]/count[cpid];

 waitTimeMap[cpid] = 0;

 cpuTime[cpid] = 0;

 count[cpid] = 0;

 }

 }

 }

 procTimeMap[cpid] = tm;

}

END {

 timeMapl = 0;

 for (i in timeMap) { timeMapl +=1 ; } print totalTime/numCached,timeMapl;

}

 Average CAF file size , average CAF file transfer speed

(queued) , number of CAF files transferred.

awk '/executed process.* \/CAF.* /{ ok=1; } /Transferred/{ if (ok == 1) {

totalTime += strtonum($5); totalSize += strtonum($2); n+=1; ok = 0; } } END { print

totalSize/n,totalSize/totalTime,n; } ' ./sm_log__05_03_06

